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1  Introduction to MCRA 
MCRA (Monte Carlo Risk Assessment) is a computational tool for dietary risk assessment of 

substances in foods based on monitoring data concerning the quality of foods and agricultural 

products. Intake (exposure) assessment is an important step in risk assessment of substances found in 

food, such as agricultural chemicals (e.g. pesticides, veterinary drugs), toxins (e.g. mycotoxins), 

environmental contaminants (e.g. dioxins), nutrients and micronutrients (e.g. fat, vitamins). 

1.1 Model description 

This manual describes the stochastic (or Monte Carlo) models behind the MCRA program. These 

models assess acute (short-term) or chronic (long-term) risks due to dietary intake by combining food 

consumption survey data and concentration data from e.g. monitoring programs.  

 

Food consumption data may arise from different sources. Typically, national food consumption 

surveys or monitoring programs provide information on food intake in the general population. For 

example, from the Dutch Food Consumption Survey (1997) food consumption patterns (x1 ,...,xp), 

body weight (w), age (a) and sex (s) are available for 6250 individuals on 2 consecutive days. When 

concentrations are not measured on consumed foods, a composition database is necessary to convert 

the amounts of food as consumed (e.g. pizza) to amounts of foods as measured (x1 ,...,xp) which are 

used in the model. Van Dooren et al. (1995) provide such a conversion for the Dutch situation. 

Concentration data may be available from different sources. In some countries national monitoring 

databases exist, which are useful for the risk assessment of substances already in use. For example, 

the Dutch KAP database (van Klaveren 1999) stores annually more than 200,000 records of 

measurements originating from food monitoring programs for meat, fish, dairy products, vegetables 

and fruit.  

 

Basically, MCRA simulates daily consumptions by sampling a food consumption database and 

combines these with a random sample from either a concentration database (empirical distribution) or 

a parametric distribution of concentrations. The result is a full distribution of intakes, rather than 

traditional deterministic methods which only provide a point estimate. Percentiles of the intake 

distribution can be used to assess risks by relating them to e.g. an acute reference dose (ARfD).  

 

The basic model for the intake of a special substance in an acute risk analysis is: 

i

p

k

ijkijk

ij
w

cx

y


 1  

where yij is the intake by individual i on day j (in microgram substance per kg body weight), xijk is the 

consumption by individual i on day j of food k (in g), cijk is the concentration of that substance in food 

k eaten by individual i on day j (in mg/kg, ‘ppm’), and wi is the body weight of individual i (in kg). 

Finally, p is the number of foods accounted for in the model.  

Note that the definition of ‘food’ is flexible: it may represent a Raw Agricultural Commodity (RAC), 

e.g. ‘apple’, but it may also specify subdivisions, e.g. ‘apple, peeled’ or ‘apple, imported’. 

 

The quantities xijk, wi and cijk are assumed to arise from probability distributions describing the 

variability for food consumption and weight, p(x1,...,xp,,w), and for concentrations of substances in 

each food, pk(c). In principle, these probability distributions may be parametric (e.g. completely 

defined by the specification of some parameter values) or empirical (e.g. only implicitly defined by 

the availability of a representative sample). Given these probability distributions (or estimates thereof) 

MC-simulations can be used to generate an estimate of the probability distribution p(yij) to assess 

acute risks by intake of the substance. 
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In a chronic exposure assessment, the main interest goes to the fraction of individuals with a usual 

intake per day higher than an intake limit. Usual intake is defined here as the long-run average of 

daily intakes of a substance by a individual. Usually, food consumption data are available for 

individuals on 2 (or more) consecutive days. We assume an equal number of days for each individual. 

This is in confirmity with our method of data entry for consumption. As a consequence, days without 

consumptions do have zero intake. MCRA calculates the distribution of the usual intakes over 

individuals based on the average concentration and the empirical distribution of intake between 

individuals and between different intake days of the same individuals. Percentiles of this usual intake 

distribution can then be related to e.g. the acceptable daily intake (ADI). 

 

The basic model for the intake in a chronic risk analysis is: 

i
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
 1  

where yij, xijk and wi are defined as before but now concentrations of the substance found in food k 

enter the model as an average of all values, ck . 

 

In MCRA 7.1 the following models are available to assess chronic risks:  

1) the betabinomial-normal (BBN) model (see 5 ),  

2) the logisticnormal-normal model, in a full version that includes the estimation of correlation 

between intake frequency and amount (LNN), and in a simpler version without this estimation 

(LNN0) (see 6 ) 

3) the discrete/semi-parametric model known as the Iowa State University Foods (ISUF) model; 

(see 7 ).  

4) the observed individual means (OIM) model (see 8  H) 

 

The models for acute and chronic risks allow for effects of food processing between monitoring and 

ingestion, they use information on Limit of Reporting (LOR) and percent crop treated to check 

whether non-detects present a source of uncertainty. For acute risks, unit variability either from 

available data or using default assumptions can be modelled. Uncertainty of percentiles or intake 

limits  can be established by resampling methods.  

 

Depending on the problem, MC-samples may be drawn from the complete database, from a day- or 

age-restricted subset or from consumption-days only. In some cases there is insufficient information 

for specific subgroups in the population. For example, in a study on infants (age up to 12 months), a 

separately constructed food consumption database has been used (Boon et al. 2003). 

1.2 Data needed 

The data needed for MCRA are stored in MS Access databases or Excel. The database format requires 

understanding about building up a relational database using the primary sources of the data. In 

exchange, flexibility to pre-process the data is offered and results may be investigated in greater 

detail. The Excel type of data do have a simple two-way data lay-out. Find in MCRA 7 Data 

Formats a full description of how to prepare the data.  

Basically, input data for MCRA usually originate from two sources: food consumption surveys and 

monitoring programs on substances found in foods. Often, additional tables are needed to link 

consumption data to concentration data or to implement model options like unit variability or 

processing. 238HFigure 1 presents the linkage between tables: consumption data are linked directly to 

concentration data or in an indirect way, through the use of food composition data, food marketshare 

data, processing data or by the use of a supertype algorithm. 
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Figure 1: Links between consumption and concentration data 

Consumption data are consumed portions of food (consumed at different days) of individuals. To get 

standardized intakes, supply the weight of each individual. Other characteristics of the individuals, 

like age and/or sex, may be used in further analyses.  

Concentration data on substances are the amounts of the substance found on monitoring samples of 

food.  

The category additional tables provide information that links consumption data to concentration data 

or store information for more sophisticated analyses like unit variability (see 239HFigure 1). Food 

composition data specifies the composition of foods. So, speaking about pizza, the composition 

specifies proportions for e.g. wheat, tomato, cheese etc. Food marketshare data specifies the 

proportion of subtypes, so for apple, marketshares are defined for e.g. Jonagold, Granny Smith, 

Golden Delicious etc. Processing data specify the unprocessed food, the processed food and the 

corresponding processing factors, e.g. for grapes raisins are specified. The supertype of a food is, if 

needed, automatically determined. So the supertype of e.g. Granny Smith is apple. 

 

The MCRA system has a central database with example data. However, MCRA is primarily designed 

to work with user databases, or with a mixture of user and centrally supplied data. For example, 

provide your own data on concentration levels and combine these with the centrally supplied 

consumption data. Be careful when combining tables from different databases: codes of foods of 

centrally supplied data and your own data should be consistent. 

1.3 Get started 

To use MCRA, go to 3Hhttps://mcra.rivm.nl. As a potential new user, first fill in the registration form. 

After login, the central menu is entered and from here all tasks and corresponding actions are started.  

 

The central menu (Figure 2) contains four main tasks which are described as: 

 Data Selection (Access [mdb], Excel [xls] or Simulated Data [xls]) 

 Specify Model (specification of input options) 

 Set and Run (specification of output options, start Monte Carlo Risk Assessment) 

 View Output (managing output) 

 

Foods as consumed in 

table: 

- FoodConsumption 

 

Foods as measured in table: 

- ConcentrationValues 

- ConcentrationWorstCaseValues 

 

Foods in additional tables: 

- Processing 

- FoodComposition 

- FoodMarketshare 

- supertype algorithm 

 

https://mcra.rivm.nl/
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Figure 2: Central menu 

A main task is started by clicking the button. Then, a menu containing actions related to the main task 

is displayed. After clicking a main button, it turns into blue to indicate that the task is active. For a 

first time user, the figure above shows the central menu and Data Selection can be started (only 

available option). Otherwise, press New Project to clear all selections.  

For a short introduction in MCRA, we refer to MCRA 7 Examples or MCRA 7 Overview.  
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2  Acute risk assessment 
Substance concentrations in the various foods are independent and therefore can be modelled by 

univariate distributions. 

2.1 Empirical modeling of concentrations 

In the empirical (non-parametric) approach, concentrations are sampled at random from the available 

data and combined with the consumption data to generate a new distribution of intake values. To 

assess the risk-intake, percentiles of the intake distribution are estimated. 

2.2 Parametric modeling of detects and nondetetects 

In the parametric approach, concentrations per food are sampled from parametric distributions. A 

special feature of concentration data is that the large majority of measured concentrations (often more 

than 80%) is recorded as zero (non-detects). These values may correspond to true zero concentrations 

(for example because the substance is never used in the specific food), or they may correspond to low 

concentrations which are below a pre-established Limit of Reporting (LOR).  

Regarding all non-detects as censored data values is not always valid. Alternative models exists to fit 

data that contain non-detects. In [EFSA, draft interim scientific report, 2009], a review is given on the 

most commonly used statistical methods to deal with non-detects. Among them are substitution, log-

probit regression, maximum likelihood estimation and non parametric methods. In the draft EFSA 

report, the question whether the non-detects are true zero’s or low concentrations is not considered, 

and only described in terms of a combination of more than one log-normal distribution, e.g. binomial 

and a lognormal.  

The lognormal distribution (logarithmic transformed values) with parameters   and 
2 has been 

selected as being both theoretically sensible and practically useful (Shimizu & Crow 1988, van der 

Voet et al. 1999). Based on this priciple, we then have the following six methods: 

1. empirical (nLor ≥ 1) 
2. mixture of non-detect spike and lognormal (nLor ≥ 1) 
3. mixture of non-detect spike and truncated lognormal (nLor = 1)  
4. censored lognormal (nLor ≥ 1) 
5. censored lognormal with estimated LOR (nLor = 1) 
6. mixture of zero spike and censored lognormal (nLor ≥ 1) 
 

with nLor indicating whether multiple values for the LOR are allowed or not. 

 

Additional options for the first three models are: 

 if there are non-detect data, these can be replaced by f x LOR for a specified value f, 

 if f > 0, an additional option is to apply percentage crop treated to force true zero 

concentrations for part of the non-detect data. For legal applications of substances like 

pesticides, data may be available about the percentage of the crop which receives treatment. 

When a substance can enter the food chain only via crop treatment, and when the percentage 

of crop treated is (approximately) known to be 100pcrop-treated, then this knowledge may be 

used to infer that 100(1-pcrop-treated)% of the monitoring measurements should be real zeroes, 

contributing nothing to intake of the substance, whereas other non-detects in the monitoring 

data could have any value below the LOR.  

 

For 100(pnon-detect + pcrop-treated - 100)% of the monitoring measurements, 0 and LOR represent best-case 

and worst-case estimates. A simple way (tier 1 approach) to consider the uncertainty associated with 

non-detects is to compare intake distributions for these best-case and worst-case situations.  
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Method 2 (mixture of non-detect spike and lognormal) can be defended if all positive values are 

assumed to be above LOR, and P(c<LOR) would be very small for the fitted distribution. It would 

then be logical to apply f = 0 for the nondetects.  

Method 3 (mixture of non-detect spike and truncated lognormal) estimates a truncated lognormal 

distribution. The estimated P(c<LOR) should be lower than the fraction nondetects, and for the 

difference f = 0 would be a logical choice. 

Methods 4 (censored lognormal) and 5 (censored lognormal with estimated LOR) assume that there 

are no true zeroes, which might be a reasonable assumption for many contaminants, though not for 

artificially added substances. With model 5 the reasonableness of the given LOR value can be 

checked (assuming the lognormal model). 

Method 6 (mixture of zero spike and censored lognormal) fits a mixture distribution, where the 

nondetects are divided over a spike of true zeroes and the censored tail of the lognormal distribution.  

Method 1 (empirical) is the  parameter free alternative (default) and samples concentration values 

directly from the empirical concentration distribution using both detect and nondetect data. It requires 

to specify a value f for the nondetects (also true for methods 2 and 3). This approach requires more 

data to obtain a satisfying representation of the full distribution. 

2.3 Estimation  

The parameters of the truncated lognormal, censored lognormal and censored lognormal mixture 

model may be estimated using maximum likelihood. The censored lognormal with estimated LOR is 

an iterated version of the censored lognormal and searches for the best value of the LOR under the 

assumption that the observed fraction of non-detects equals the predicted fraction of non-detects. This 

often improves the fit of the data and supports the notion that values of the LOR are not precisely 

reported by the analytical labs. 

 

Let x denote a random variable from a lognormal distribution. Then, the log transformed variable y = 

ln(x) is normally distributed with mean y  and variance 
2

y . 

The probability density function (p.d.f.) of y may be expressed as: 
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where )log(Pr(0 lorxyp   , lorx is the limit of reporting and I(y;0) is an indicator function for 

)log( lorxy  . For 00 p , the p.d.f. of y reduces to the usual lognormal density.  

 

The left truncated density for )log( lorxy   equals (assume one LOR): 
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with (.)  the standard normal c.d.f. and yylorxz  /))(log(   

 

Model parameters are estimated using maximum likelihood estimation based on the loglikelihood 

functions specified below:  

 

1) mixture of zero spike and censored lognormal: 
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4) censored lognormal 
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When 00 p , loglikelihood (1) reduces to 
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5) censored lognormal with estimated LOR (assume one LOR) 
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3) mixture of non-detect spike and truncated lognormal (assume one LOR) 

 

Ignoring the n0 values below xlor  leads to: 
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2) mixture of non-detect spike and lognormal  

 

Ignoring the truncated part leads to: 
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where )log( ii xy  , (.)  is the standard normal c.d.f., yylorixz  /))(log( ,  ,  

yylor lorz  /))(log(   , n0 number of censored values (xi < xi,lor),  n1  number of uncensored 

values (xi >= xi,l or) and xi, i = 1…n 

The loglikelihood functions are evaluated in R, using the optim algorithm to find estimates for y , 

2

y  and 0p . 

 

In the basic model, for method 1, 2 and 3 we have: 

 

 ijkijkijk cposIc   

 

with ijkI  indicating whether a concentration is sampled ( ijkI =1) or not ( ijkI =0), and cposijk  is the 

concentration value according to the chosen method. The probability of ijkI  being 1 or 0 depends on 

the number of detects found for food k and ijkI  is sampled separately for each individual i on occasion 

j.  

For method 4 and 5, 00 p  and  the basic model reduces to: 

 

ijkijk cposc   

 

For method 6, where 00 p , ijkI = p0  and cijk  is sampled as in method 1, 2 and 3. 

 

Occasionally, estimation of the model parameters (mean, variance and zero spike) may fail because 

concentration data on specific foods are sparse or even missing.  
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3  Modelling processing effects 
Concentrations in the consumed food may be different from concentrations in the food as measured in 

monitoring programs (typically raw food) due to processing, such as peeling, washing, cooking etc. 

In general, we assume the model: 

 

 ijkkijk cfcpos   

 

where cijk is the concentration in the raw food, and where fk is a factor for a specific combination k of 

RAC and processing. Values will typically be between 0 and 1, although occasionally the processing 

factor may also be >1 (e.g. drying as applied for grapes and figs).  

The user of the model will have to specify processing factors for each food k as defined in the food 

consumption data base. For this purpose, it is advised to maintain a data base of processing factors, 

indexed by substance, RAC and processing type (e.g. washing, peeling or other processing). Before 

running the model, it may then be necessary to specify how the necessary processing factors are 

derived from the data base entries and/or other information. Example: if there are no processing 

factors known for captan in pears, it may be decided to use the corresponding factors for apples 

instead. 

Often processing effects may be variable, and this may be entered in the Monte Carlo modeling by 

specifying two values for each processing factor: 

1. fk,nom: the nominal value, typically some sort of central value from an experimental study 

2. fk,upp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical 

information on variability of the factor is available) 

A typical data base entry might thus read: 

RAC processing fk,nom fk,upp  

apple washing 0.5 0.7 

 

In the conversion algorithm (see Data Formats document) a check is made on the simultaneous use of 

Food conversion factors for weight changes between two foods, e.g. a food as eaten and a food as 

measured (step 3 of the conversion algorithm) and processing factors for concentration changes 

between these two foods (step 2 of the conversion algorithm). If the same code pair is found in both 

tables, the processing factor is modified to indicate the change in amount (rather than concentration) 

of the compound. 

 

In the MC-modeling, processing factors can be used in either of three ways (for each food k to be 

chosen by the user): 

3.1 No processing factor  

Just take fk = 1. This is in most (though not all) cases a worst-case assumption. No data on processing 

are needed and therefore this route is useful in a first tier approach. 

3.2 Fixed processing factors 

Use fk = fk,upp. Available information on specific processing effects is used, although still in a 

cautionary way (in accordance with the precautionary principle). Note that fk,nom values need not to be 

specified. When both are specified, the highest value will be used; worst case scenario.  

3.3 Distribution based processing factors 

Sample fk using a normal distribution. Log or logit transformed values of fk,nom and fk,upp are used to 

define the first two moments of the normal distribution. Two situations are distinguished depending 

on the type of transformation.  
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a) The logarithms of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper 

confidence limit of a normal distribution. This normal distribution thus is specified by a mean 

ln(fk,nom) and a standard deviation {ln(fk,upp) – ln(fk,nom)}/1.645. Values are drawn from this 

distribution in the MC-simulations. Processing factors fk will be nonnegative. Note: fk,upp and 

fk,nom values equal to 0 are replaced by a low default value (0.01); this is useful 

computationally to avoid problems with logarithms.  

b) The logits of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper confidence 

limit of a normal distribution. This normal distribution thus is specified by a mean logit(fk,nom) 

and a standard deviation {logit(fk,upp) – logit(fk,nom)}/1.645. Values are drawn from this 

distribution in the MC-simulations. Processing factors fk will be between 0 and 1. Note: fk,upp 

and fk,nom values equal to 0 and 1 are replaced by default values (0.01 and 0.99); this is useful 

computationally to avoid problems with logits. 

The user should keep in mind that, in case of a lognormal distribution, fk,nom defines the median, 

while fk,upp quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the 

standard transformation, but for very skew distributions (see 375HFigure 3) occasionally values above 

1 are sampled (upper row, 1
rst

, 3
rd

 and 5
th
 plot). A logit transformation should be considered 

instead. 

 

To process simultaneously some foods using fixed factors and others distribution based, choose 

‘processing (distribution based)’. Now, fixed factors fk are obtained by providing only fk,upp whereas 

random factors fk are sampled when both fk,upp and fk,nom are given.  

It is not necessary to fill out a complete list of processing factors for all foods. Missing values of fk,nom 

and fk,upp are, by default, replaced by the value 1.H  

 

 

Figure 3: Lognormal (upper row) and logistic (lower row) distributions for various values of 

fk,nom (= nom) and fk,upp (= upp)  

4  Acute risk assessment - Modeling of unit variability 

4.1 Variability in composite samples 

Variability in concentrations between individual units is a relevant factor in the assessment of short-

term dietary intake of substances in food. It is addressed separately because monitoring measurements 

cmk are typically made on homogenised composite samples, both in controlled field trials and in food 

monitoring programs. Such a composite sample for food k is composed of nuk units with nominal unit 

weight wuk each. The weight of a composite sample is therefore wmk = nuk  wuk . This weight is often 
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larger than a consumer portion, e.g. a typical composite sample of 20 sweet peppers weighs 3.2 kg, 

whereas daily consumer portion weights in the Dutch Food Consumption Survey 1997 ranged from 

0.08 g to 458 g.  

How should monitoring data be used to estimate the raw food concentration levels cijk in consumer 

portions? Although the mean level of cmk may be a fair estimate of the mean level of cijk, the 

variability of cmk is not appropriate to estimate the variability of cijk. In smaller portions more extreme 

values may occur more readily, and thus acute risks may be higher than would follow from a direct 

use of the composite sample data. 

Therefore, the FAO/WHO Geneva Consultation recommended to include a variability factor (v) in the 

non-probabilistic calculation of an International Estimate of Short Term Intake (IESTI) (FAO/WHO 

1997). The IESTI has been adopted by the Joint Meeting of FAO and WHO experts on Pesticide 

Compounds in food in 1999, and was modified in 2000 to reflect that the supply for actual 

consumption on a given day is likely to be derived from a single lot (JMPR 1999, 2000). In both the 

original and the modified definition, the variability factor is used in a similar way. The basic idea is 

that the concentration of a substance for the first unit eaten is multiplied by v, whereas this factor is 

not applied for any remaining part of the daily consumption. 

 

In the original presentation v was meant to reflect “the ratio of a highest concentration in the 

individual product unit to the corresponding concentration seen in the composite sample” 

(FAO/WHO 1997). It was not clearly stated what was meant with “a highest concentration”. Should 

this be the maximum concentration found or should it be a high percentile, e.g. p95 or p97.5? In 

practical terms this did not matter too much, because little data were available. Therefore the 

FAO/WHO Consultation recommended to take initial values of v equal to “the number of units in the 

composite sample as given in Codex sampling protocols”. This will provide a conservative estimate of 

the concentration of the substance in the first unit, based on the assumption that all of the content of 

the substance present in the composite sample are present in this single unit. If Codex sampling 

protocols are used, then the number of units per composite sample is 5 for large crops (unit weights > 

250 g) and 10 for medium crops (unit weights 25-250 g). For small crops (< 25 g) a variability factor 

v = 1 was recommended. More recently, it has been proposed to replace the default value 10 with 7. 

For foods which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, 

bulking/blending a variability factor v = 1 is proposed. To summarise: 

 

unit weight, wu FAO/WHO default variability factor, v 

< 25 g 

25 –250 g 

> 250 g 

juicing, marmalade/jam, sauce/puree 

1 

7 

5 

1 

Table 1: Default variability factors for IESTI calculations 

The Consultation specifically recommended to replace these default values with more realistic values 

obtained from studies on actually measured units. A working group of the International Conference on 

Pesticide Residues Variability and Acute Dietary Risk Assessment held in York in 1998 suggested to 

define v, for samples taken from controlled trials, as the 97.5
th
 percentile of the unit levels divided by 

the sample mean (Harris et al. 2000), and this is used in the current version of MCRA as the defining 

relation.  

4.2 Deterministic modeling  

MCRA offers two possibilities for display of deterministic estimates, in comparison to the 

probabilistic results: 

1) The user can enter an externally calculated value (e.g. from PRIMO see 

http://www.efsa.europa.eu/en/mrls/mrlteam.htm) for display together with the probabilistic 

results; 

2) the user can ask for calculation of the IESTI. 

 

http://www.efsa.europa.eu/en/mrls/mrlteam.htm


 15 

The IESTI is a deterministic estimate of the short-term intake of a substance on the basis of the 

assumptions of high daily food consumption per individual and highest concentrations from 

supervised trials. The IESTI is expressed per kg body weight and has only been defined for single 

foods. 

 

Calculations of IESTI (according to FAO 2002) recognise four different case (1, 2a, 2b and 3). In 

cases 1 to 3 the following definitions are used: 

LP:  Highest large portion reported, calculated as the 97.5
th
 percentile of the distribution of  

consumed portions on days with positive consumption of the food (kg food/day) 

HR:  Highest residue (= concentration ) in composite sample, mg/kg 

bw:  Mean body weight, kg; in MCRA values may be input by the user, or weighted means 

 are calculated over individuals with the number of days on which they consumed the 

food as weights  

U:  Unit weight of the edible portion, kg. 

v:  Variability factor – the factor applied to the composite value to estimate the 

concentration in a high-value unit 

MR:  Median residue (= concentration) in food, mg/kg 

 

Case 1: 

The concentration of the substance in a composite sample reflects the concentration in meal-sized 

portion of the food (unit weight is below 25 gr). 

 

 IESTI = 
bw

HRLP*
 

 

Case 2: 

The meal sized-portion, such as a single fruit or vegetable unit might have a higher concentration than 

the composite (whole fruit or vegetable unit weight is above 250 gr). Case 2 is further divided into 

case 2a and 2b. 

 

Case 2a:  

Unit edible weight of raw food is less than large portion weight. 

 

 IESTI = 
bw

HRULPvHRU *)(** 
 

 

The formula is based on the assumption that the first unit contains concentartions at the HR*v level 

and the next one contains concentrations at the HR level, which represents the concentrations in the 

composite from the same lot as the first one. 

 

Case 2b: 

Unit edible weight of raw food exceeds large portion weight. 

 

 IESTI = 
bw

vHRLP **
 

 

The formula is based on the assumption that there is only one consumed unit and it contains 

concentrations at the HR*v level. 

 

Case 3: 

For those processed foods where bulking or blending means that the median represents the likely 

highest concentration. 
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 IESTI = 
bw

MRLP *
 

 

When an acute reference dose is available, the calculated IESTI values are also expressed as a 

percentage of the ARfD. 

4.3 39HProbabilistic modeling: specifying distributions 

How should variability between units be incorporated in probabilistic modeling of acute risks? In 

probabilistic modeling we generate consumption amounts and concentrations which will be 

multiplied, summed over foods and divided by body weight to estimate the intake. However, the 

concentration cmk will usually be derived from a distribution based on measurements on composite 

samples. Assume that a batch of food contains N units (N large, for the statistics we assume infinite). 

The monitoring measurement cmk is made on a composite sample of nuk units (for example, nuk = 5). 

These units are assumed to be representative of the batch. Unit concentrations cijk are to be simulated 

for one or more units from this batch that will be part of a consumption portion in the MC-simulation. 

Basically, there are three possibilities depending on the availability of data: 

1. use actual measurement data on individual units; 

2. use variability factors or other summary statistics based on measured individual units; 

3. use conservative assumptions. 

In MCRA methods under categories 2 and 3 are implemented. The first approach has been pioneered 

in the context of a large UK survey on pesticides in fruit (Hamey 2000).  

 

The following three models are discussed in more detail: 

1. beta model, requires knowledge of the number of units in a composite sample, and of the 

variability between units (realistic or conservative estimates); 

2. bernoulli model, requires only knowledge of the number of units in a composite sample (results 

are always conservative); 

3. lognormal model, requires only knowledge of the variability between units (realistic or 

conservative estimates). 

 

Preferably realistic estimates of unit variability are to be used, either expressed as coefficients of 

variation cv (standard deviation divided by mean) or as variability factors v (defined in MCRA as 

97.5
th
 percentile divided by mean). However, often such information is not directly available. In such 

cases it is customary to select high values for the variability factor, either based on collections of 

variability factors for other substances/foods, or calculated as the theoretical maximum derived from 

the number of units in a composite sample. 

 

How to translate the concept of conservatism to the probabilistic model? In a non-probabilistic model 

a higher value of v gives a higher IESTI, but in a stochastic model a higher variability means more 

spread around a central value. In general this means that higher values, but also lower values can be 

generated. In order to retain an overall conservatism it is therefore necessary to replace all simulated 

values below the monitoring level (cmk) with cmk itself. 

 

It is common to use default conservative values, such as the FAO/WHO variability factors in 376HTable 1. 

However, one should be aware that two entirely different interpretations are possible: 

1. The default variability factor may be defined in the same way as a data-based variability factor (v 

= 97.5th percentile/mean). For example, it may be an expert opinion based on seeing many actual 

data sets from trials, that a certain value v can be used as a conservative value for other situations 

(see e.g. Table 1 in Harris et al. 2000). Then we might use the beta or the lognormal model, 

censoring these distributions at cmk to guarantee conservative behaviour. For the beta model 

additional information on the number of units in a composite sample is needed. 

2. Alternatively, one can revert to the original definition and interpret FAO/WHO variability factors 

as the number of units in the composite sample (v = nuk). In this case, without other information, 

the only workable model is the bernoulli model. 
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Table 2 describes the four options when a parametric form for unit variability is specified. 

Measurements are simulated for a new unit in the batch using a lognormal distribution or for a unit 

belonging to the composite sample leading to the use of the beta distribution. 

 

 

 Simulate for new unit in batch  

 

(lognormal distribution) 

Simulate for unit belonging to 

composite sample 

(beta distribution) 

Estimates of unit 

variability  are 

realistic (R) 

 no censoring at cmk 

 no upper limit to the unit 

concentration 

 no censoring at cmk 

 unit values never higher than 

kk cmnu    

Estimates  of unit 

variability are 

conservative (C) 

 unit values will be left-censored 

at cmk 

 no upper limit to the unit 

concentration 

 unit values will be left-censored at 

cmk 

 unit values never higher than 

kk cmnu    

Table 2: Choices for estimated variability factors. cmk = value of composite sample 

concentration, nuk  =  number of units in composite sample. 
10H 

4.3.1 Beta model 

With this model MCRA will generate values for individual unmeasured units of a measured 

composite sample. If cmk is the concentration measured (or simulated) for the composite sample in 

monitoring for food k, then the concentration in any unit can be no larger than cmax = nuk * cmk , where 

nuk is the number of units in the composite sample. Under the beta model simulated unit values are 

drawn from a bounded distribution on the interval (0, cmax). The parameter for unit variability is 

specified as a coefficient of variation cvk or as a variability factor vk of the unit values in the composite 

sample. 

The standard beta distribution is defined on the interval (0, 1) and is usually characterised by two 

parameters a and b, with a>0, b>0 (see e.g. Mood et al. 1974). Alternatively, it can be parameterised 

by the mean µ = a/(a+b) and the variance 2 
= ab(a+b+1)

-1
(a+b)

-2
, or, as applied in MCRA, by the 

mean µ and the squared coefficient of variation cv
2 
= ba

-1
(a+b+1)

-1
. Note that the coefficient of 

variation is the same for the unscaled and the scaled distributions. 

For the simulated unit values in each iteration of the program we require an expected value cmk. This 

scales down to a mean value µ = cmk/cmax = 1/nuk in the (standard) beta distribution. From this value 

for µ and an externally specified value for cvk the parameters a and b of the beta distribution are 

calculated as: 

 

  1
1


 knuba  

  
2

211

kk

kkk

cvnu

cvnunu
b


  

 

From the second formula it can be seen that cvk should not be larger than 1knu  in order to avoid 

negative values for b. 

When the unit variability is specified by a variability factor 
k

k
k

cm

p
v

5.97
  instead of a coefficient of 

variation cvk then MCRA applies a bisection algorithm to find a such that the cumulative probability 

975.0)],([ baBetaP for  1 knuab .  

Sampled values from the beta distribution are rescaled by multiplication with cmax to unit 

concentrations cijk on the interval (0, cmax).  
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In the case that variability has been estimated by a conservative high value, all sampled values lower 

than cmk are replaced by cmk. 

In 377HFigure 4, for several values of the coefficient of variation and number of units the beta distribution 

is shown with estimated parameters a and b. When the parameter for unit variability is high (upper 

left plot) the ratio of the spikes on the extremes (3:1) represent the 75% probability at cijk = cmk and 

25% probability at cijk = cmax. In the upper right plot, the parameter for unit variability is smaller and 

some unit values in between the two extremes are sampled. The ratio of the spikes is about 5:1, which 

is according to the number of units in the composite sample. In the lower left plot, variability is low 

and unit values are sampled around the monitoring value. In the extreme case, when unit variability is 

close to zero the monitoring value itself is sampled and a spike occurs (not shown ). The lower right 

plot shows an intermediate situation, moderate to high variability. 

  

 
cvk =1.732; nuk=4; a=0.00005; b=0.00015 

 
cvk =1.20; nuk=6; a=0.4; b=2 

 
cvk=0.62; nuk=6; a=2; b=10 

 
cvk =1.46; nuk=4; a=0.1; b=0.3 

Figure 4: Standard beta distribution for different values of the coefficient of variation cvk and 

number of units nuk in the composite sample. x axis from 0 to 1.  

4.3.2 Lognormal model  

With the beta and bernoulli models, MCRA simulates concentrations for units in the composite 

sample, such that the concentration of an individual unit can never be higher than the monitoring 

measurement multiplied by the number of units in the composite sample cmax = nuk * cmk . 

With the lognormal model for unit variability MCRA simulates concentrations for new units in the 

batch from which the composite sample was taken. Effectively the number of units in a batch is very 

large, so in this case there is no practical upper limit to the concentration that can be present.  

The lognormal distribution is considered as an appropriate model for many empirical positive 

concentration distributions. With the lognormal model MCRA assumes a lognormal distribution for 

unit concentrations. Let this distribution be characterised by μ and , which are the mean and standard 

deviation of the log-transformed concentrations. The unit log-concentrations are drawn from a normal 

distribution with mean   2

2
1ln   ikcm .  

Also for the lognormal model MCRA allows two choices to specify the parameter for the unit 

variability. The parameter is specified as a coefficient of variation (cvk) or as a variability factor (vk). 

The coefficient of variation cv is turned into the standard deviation  on the log-transformed scale 

with: 

  = √ln(cv
2
 + 1) 
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The conversion of a variability factor into parameters of the lognormal distribution requires an exact 

definition of what is meant. Here, the variability factor is defined as the 97.5
th 

percentile of the 

concentration in the individual measurements divided by the corresponding mean concentration seen 

in the composite sample. A variability factor v is converted into the standard deviation  as follows: 

 

2

2

2/196.1

2/1

96.15.97 










 e
e

e

mean

p
v   

 

with μ and  representing the mean and standard deviation of the log-transformed concentrations. So 

 

 ln(v) = 1.96 – 1/2
2 

 

Solving for  gives: 
2
 – 2*1.96 + 2log(v) = 0, with roots for  according to: 

 

  = 1.96  √(1.96
2
 – 2log(v)) 

 

The smallest positive root is taken as an estimate for  . 

 

In the case that variability has been estimated by a conservative high value, all sampled values lower 

than cmk are replaced by cmk. 

4.3.3 Bernoulli model  

In practice, measurements on individual units to obtain a measure for unit variability are not very 

common. The bernoulli model is a limiting case of the beta model, which can be used if no 

information on unit variability is available, but only the number of units in a composite sample is 

known (see van der Voet et al. 2001). 

 

As a worst case approach we may take cvk as large as possible. When cvk is equal to the maximum 

possible value 1knu , the (unstandardised) beta distribution simplifies to a bernoulli distribution 

with probability (nuk – 1)/nuk (or (vk-1)/ vk ) for the value 0 and probability 1/nuk  (or 1/vk ) for the 

value cmax = nuk * cmk..  

In MCRA values 0 are actually replaced by cmk, to keep all values on the conservative side. For 

example, with nuk = 5, there will be 80% probability at cijk = cmk and 20% probability at cijk = cmax.. 

When the number of units nuk in the composite sample is missing, the nominal unit weight wuk is used 

to calculate the parameter for unit variability.  

4.3.4 Estimation of intake values using the concept of unit variability 

 For each iteration i in the MC-simulation, obtain for each food k a simulated intake xik , and a 

simulated composite sample concentration cmik . 

 Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to unit 

weight wuk, except for the last partial intake, which has weight   kikikikl wunuxxw 1 . 

 For the beta or bernoulli distribution: draw nuxik simulated values bcikl from a beta or bernoulli 

distribution. Calculate concentration values as cikl = bcikl * cmk, max = bcikl * cmk * nuk. Sum to obtain 

the simulated concentration in the consumed portion: 

 

ik

nux

l

ikliklik xcwc
ik





1
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 For the lognormal distribution: draw nuxik simulated logconcentration values lcikl from a normal 

distribution with mean  ikcmln  and standard deviation . Back transform and sum to obtain 

the simulated concentration in the consumed portion: 

 

ik

nux

l

lc

iklik xewc
ik

ikl



1

 

5  Chronic risk assessment - Betabinomialnormal model (BBN) 
The Betabinomial-Normal (BBN) model for chronic risk assessment is described in de Boer et al. 

(2009), including its near-dentity to the STEM-II model presented in Slob (2006). 

 

Through the assumed independence of consumption data and concentration values the daily intake of 

individual i on day j can be calculated as the aggregated sum over foods of consumption amount per 

kg body weight times average concentration. For empirical modeling of concentrations, the average 

concentration of all available concentration measurements on a food is taken, with non-detect 

measurements entered as zero, LOR2
1 or LOR , or any other fraction of LORas specified in the 

input options. For parametric modeling of concentrations, the average concentration per food is 

calculated as: 

 

model average concentration for food k 

empirical 





n

i

ik

k

k x
n

c
1

1
 (nondetect xik may be replaced by f x LOR) 

mixture of non-detect spike and 

lognormal  
)*()1( kkkkk LORfppc    

mixture of non-detect spike 

and truncated lognormal 
)*()1( kkkkk LORfppc    

censored lognormal 
kkc   

censored lognormal with 

estimated LOR 
kkc   

mixture of zero spike and 

censored lognormal 
kkk pc )1( 0  

 

where ck  is the average concentration (on logscale) for food k, xik concentration value, k the 

estimated mean, pk  the fraction of nondetects, (1 – pk), the fraction of detects and p0k, the estimated 

fraction of true zero’s (or true nondetects).  

5.1 Intake frequency distribution 

Let n and npos be the total number of days per individual (for all individuals equal) and the number of 

days with a positive intake, respectively. Then npos is modelled using a betabinomial distribution 

with binomial totals n and probabilities p. The probabilities, p, are assumed to follow a beta 

distribution: 

 

 f(p)= 
)()(

)(








p
α-1

(1-p)
β-1 

 

With ),( B = 
)(

)()(








, the probability that npos equals x can then be written as: 
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 P(npos=x) = 








x

n

),(

),(





B

xnxB 
,  x = 0, 1 … n 

 

This distribution is known as the betabinomial distribution. 

 

The mean and variance of a beta distribution are: 

 

 )/(     

and )]1()/[()( 2   n , respectively. 

 

Re-parameterizing by )/(   and )1/(1    is a more stable and interpretable 

parameterization. It can be shown that the mean and variance of npos are equal to n  and n

])1(1)[1(   n , respectively.  

 

Note that the first part of the variance n )1(    equals the binomial variance; the second part is the 

so-called overdispersion factor.  

Fitting the betabinomial model with maximum likelihood gives estimates ̂  and ̂  for the parameters 

π and φ. Back-transformation  gives the following estimates for   and   : 

 

 ˆ/)ˆ1(ˆˆ   and  ˆ/)ˆ1)(ˆ1(ˆ   

 

The distribution of the probability that a individual eats a food with a substance at a certain day is then 

Beta(̂ , ̂ ). 
51H  

5.2 Modeling the positive intake amounts 

5.2.1 Power or log transformation  

First, to achieve a better normality, the positive daily intake amounts are transformed. The user can 

choose a logarithmic transformation  yyf ln)(   (no parameters to be estimated) or a power 

transformation qyyf )(  (one parameter to be estimated). In the latter case the optimal power is 

determined on the grid  
100

1
5.3

1
3
1

5.2
1

2
1

5.1
1 ,...,,,,,,1,2,10 , with a further refinement grid search around 

the best fitting value. If a power 100
1 gives the best fit in this grid search, then the logarithmic 

transformation is selected (Note that a logarithmic transform corresponds theoretically to 0q ). The 

goodness of fit is determined by minimising the residual sum of squares: 
2

1 ))(( qyiz  of a 

regression of normal Blom scores on the power-transformed daily intakes. Normal Blom scores are 

(Tukey 1962): 

 

  

















 

4
1

8
3

1

)(
n

i
z i

 

 

where i is the rank of the n
th
 non-zero daily intake, n, the total number of non-zero intakes and  1  

is the inverse of the standard normal cumulative distribution function. 

In MCRA 7.1 the power transformation, given by y
p
, has been replaced by the equivalent Box-Cox 

transformation. The Box-Cox transformation is a linear function of the power transformation, given 

by (y
p
-1)/p, and has a better numerical stability.  
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5.2.2 Model with between-individual and within-individual variance component 

The transformed positive intake amounts are modelled in a ML analysis with random terms individual 

and interaction individual.day to estimate the between-individual and within-individual variance 

component. For a logarithmic transformation : 

 

 ln(yij)= μ + ci+ uij 

 

and a power transdormation (with power q) 

 

 yij
q
 = μ + ci+ uij 

 

where ci and uij are the individual effect and interaction effect, respectively. These effects are assumed 

to be normally distributed N(0, 
2 between) resp. N(0, 

2 within).  

 

If the positive intake amounts are logarithmically transformed it can be shown that the expectation 

and variance of the positive intake amount per random consumption day of a random individual are: 

 

 E(yij)  = exp(μ + ½ 
2 within) 

 Var(yij)  = 
2 between 

For the power transform the expectation equals: 

E(yij)  =  
22)1(

2

1
   within   (Dodd et al., 2006) 

5.3 Modeling usual daily intake  

5.3.1 Analytical integration 

For logarithmic transformed intake amounts, a analytical solution is available (not implemented in the 

MCRA program).  

The usual intake is defined as the intake amount per random intake day (over both intake and non-

intake days) of a random individual. To obtain the usual intake the E(y) from 386H5.2.2  has to be 

multiplied by the probability π from 387H5.1 . If π was constant for all individuals the usual intake would 

have a lognormal distribution with mean ln(π) + μ + ½ 
2 within and variance 

2 between. But because 

we have assumed in 388H5.1 that individuals have different p’s coming from a beta distribution, the 

probability that a individual has a usual intake lower than say an intake limit z equals: 

 

 P(py ≤  z) = ypp
p

 ( ≤
p

z
) =  ypp

p

ln(  ≤ (ln( z) – ln (p) ) )

 )
ˆ

ˆ ½ˆ)ln()ln(
()1(

)ˆ()ˆ(

)ˆˆ(
2

1ˆ1ˆ
1

0 between

within

p

pz
pp







  




 



 dp 

 

where  is the cumulative normal distribution. 

5.3.2 Numerical integration 

If the positive amounts are transformed by a power transformation the power transformed values can 

not generally be written in terms of a probability distribution as in 389H5.3.1 : the distribution of the usual 

intakes has to be calculated numerically.  

However, in the MCRA program for both power and logaritmic transformation, the usual intake 

distribution is obtained by numerical integration.   

The distribution of the usual intakes can be obtained as follows: 
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1. Draw 1 value from a normal distribution with mean μ and variance 
2 between  

2. Calculate the inverse transformation of the value of Step 1. 

 

2a. For a logarithmic transformation: x = exp(μ +  between ln y) + ½ 
2 within. 

 

2b. For a power transformation: calculate x by Gauss-Hermite integration. For the Box-Cox 

transformation the integral can be approximated by means of N-point Gauss-Hermite integration. 

Gauss-Hermite integration approximates a specific integral as follows 

∫  ( )    (   )      ∑    (  )

 

   

 

  

 

   

in which    and    are weights and abscissas for N-point Gauss-Hermite integration, see 

Abramowitz and Stegun (1972). This results in the following usual intake 

 

  
 

√ 
∑  [   (      √          )]

 
 

 

   

 

 

with p the power of the Box-Cox transformation. There can be a small problem with Gauss-

Hermite integration. The summation term can not be calculated when the factor between squared 

brackets is negative and the power p is not an integer. This can happen when (     ) is small 

relative to the between day standard error        . In that case the corresponding term is set to 

zero. This is not a flaw in the numerical method but in the statistical model since the model allows 

negative intakes on the transformed scale which cannot be transformed back to the natural scale.  

 

3. Draw 1 value from the beta distribution 

4. Multiply the value of Step 2. with the value of Step 3. 

 

The result is one random draw from the  distribution of usual intakes. 

Repeat Steps 1 till 4 a great number of times, say 50000.  
52H  

5.3.3 Extending the models 

The intake frequency and transformed intake amount model can be extended to describe the effect of 

a covariable and/or cofactor. Then, usual intakes are dependent on explanatory variables. 

 

For frequencies:   

cofactor: logit(π) =  0l  

covariable: logit(π) =  0 +  1 f(x1; df) 

both:  logit(π) =  0l+  1 f(x1; df)  

Interaction: logit(π) =  0l+  1l f(x1; df) 

 

For amounts 

cofactor: transf(yij) =  0l + ci + uij 

covariable: transf(yij) =  0 +  1 f(x1; df) + ci + uij 

both:  transf(yij) =  0l+  1 f(x1; df) + ci+ uij 

interaction: transf(yij) =  0l+  1l f(x1; df) + ci+ uij  

 

where l=1…L and L is the number of levels of the cofactor,  yij , the amount, x1 is the covariable, f is a 

spline or polynomial function, df the degrees of freedom, ci and uij are the individual effect and 



 24 

interaction effect respectively. These effects are assumed to be normally distributed N(0, 
2 between) 

resp. N(0, 
2 within). The degree of the function is determined by backward or forward selection. 

 

The usual intake is calculated for the combination of all levels of the cofactor and a specified number 

of values of the covariable.  

 

6  Chronic Risk Assessment – Logisticnormal-Normal model 

(LNN0 and LNN) 
An alternative to the betabinomial modelling of intake frequencies in BBN model is modelling these 

frequencies by a logistic normal distribution. In notation, for probability p: 
  

 logit(p) = log(p/1-p) = μ i + ci 

 

where μ i represents the person specific fixed effect model and ci  represent person specific random 

effects with estimated variance component 
2 between. 

This model is referred to as the LogisticNormal-Normal (LNN) model. The full LNN model includes 

the estimation of a correlation between intake frequency and intake amount. This is similar to the NCI 

model described in Tooze et al. (2006).  

A simple and computationally less demanding version of the LNN method which does not estimate 

the correlation between frequency and amount (introduced as ‘LNN’ in MCRA 7.0)  has now been 

renamed LNN0, where the ‘0’ indicates the absence of correlation.  

 

The models are fitted by maximum likelihood, employing Gauss-Hermite integration. 

 

For chronic models amounts are usually transformed before the statistical model is fit. The power 

transformation, given by y
p
, has been replaced by the equivalent Box-Cox transformation. The Box-

Cox transformation is a linear function of the power transformation, given by (y
p
-1)/p, and has a 

better numerical stability. Gauss-Hermite integration is used for back-transformation. 

 

A new method to estimate individual usual intakes has been added to BBN and LNN0. The method 

builds on the proposal of Kipnis et al. (2009), but is modified to ensure that the population mean and 

variance are better represented. The method is based on shrinkage of the observed individual means 

(modified BLUP estimates) and shrinkage of the observed intake frequencies. The individual usual 

intake distribution applies to the population for which the consumption data are representative, and 

automatically integrates over any covariates present in the model. Individual intakes are not yet 

available for LNN, and when a covariable is modelled by a spline function of degree higher than 1. 

 

In case of a model with covariates the usual intake is presented in graphs and tables as a function of 

the covariates (conditional usual intake distributions). In addition, there is also a marginal usual intake 

distribution which applies to the population for which the consumption data are representative.  

 

When a chronic model is applied to consumption data with just one day per person, MCRA will ask 

for the input of a variance ratio for the amount model and a dispersion factor for the frequency model. 

These values can for example be taken from the output of similar exposure assessments of datasets 

with multiple days per person. 
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7  Chronic Risk Assessment - Discrete/semi-parametric model 

(ISUF) 
Nusser et al. (1996) described how to assess chronic risks for data sets with positive intakes (a small 

fraction of zero intakes was allowed, but then replaced by a small positive value). The modeling 

allowed for heterogeneity of variance, e.g. the concept that some people are more variable than others 

with respect to their consumption habits. However, a disadvantage of the method was the restricted 

use to contaminated foods which were consumed on an almost daily basis, e.g. dioxin in fish, meat or 

diary products. The estimation of usual intake from data sets with a substantial amount of zero intakes 

became feasible by modeling separately zero intake on part or all of the days via the estimation of 

intake probabilities as detailed in Nusser et al. (1997) and Dodd (1996). In MCRA, a discrete/semi-

parametric model is implemented allowing for zero intake and heterogeneity of variance following the 

basic ideas of Nusser et al. (1996, 1997) and Dodd (1996). This implementation of the ISUD model 

for chronic risk assessment is fully described in de Boer et al. (2009). 

 

Nusser et al. (1996, 1997) describe a procedure for the assessment of chronic risks using non-normal 

dietary intake data. Principally, their method consists of four steps: 

1. transforming the daily intake data to approximate normality using a power function or log 

transformation 

2. fitting a grafted polynomial function to the power or log transformed daily intakes. The 

polynomial provides some flexibility against power transformed components that are still 

deviating from normality, 

3. estimating the parameters of the usual intake distribution in the transformed scale, and 

4. estimating the percentiles of the distribution of usual intakes in the original scale. H 

7.1 Power or log transformation  

Daily intakes are calculated as described in section 5 . First, to achieve a better normality, the positive 

daily intake amounts are transformed. The user can choose a logarithmic transformation  yyf ln)(   

(no parameters to be estimated) or a power transformation qyyf )(  (one parameter to be estimated). 

7.2 Spline fit 

To achieve a better normality, a second transformation (optional) is performed: a spline function 

)(zgt  is fitted to the logarithmically or power transformed data t as a function of the normal Blom 

scores. The spline function is a grafted polynomial consisting of cubic polynomials between p = 3 

joint points (knots) and linear functions in the two outer regions. The daily intakes are transformed by 

interpolating from t to )(1 tgx  , using the fitted spline function.  

After a successful transformation the daily intakes x will resemble Blom normal scores and their mean 

and total variance will therefore be approximately 0 and 1. The normality of the transformed values x 

is checked with the Anderson-Darling test. In the case of a spline transformation, if normality is 

rejected at the 85% confidence level, then the number of knots p is increased and the spline fit is 

repeated (until a maximum of 22 knots). 
56H 

7.3 Estimation of the parameters of the usual intake distribution 

Variance components for between and within-individual information are fitted to the transformed 

non-zero daily intakes x using the model: 
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In this model the total variance of the daily intakes is divided into a between-individual component 

and a within-individual component. The within-individual variance component can be heterogeneous, 
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that is, it can be different for different individuals. In the model the between-individual variance 
2

1

and the mean and the variance of the within-individual variance component distribution (
2

B and 
2

A ) 

are estimated using standard statistical methods (ANOVA). Further, a test statistic MA4 is calculated 

to test whether the heterogeneity of variances is significant (see Dodd 1996 for details). 

The estimate 
2

Bs of the between-individual variance is the basis for the estimation of the distribution of 

usual intake. The distribution of usual intakes on non-zero intake days in the x scale is represented by 

a set of 400 normal Blom scores (which themselves represent the standard normal distribution) 

multiplied by s1: )(iBi zsx  . The same calculation is applied to user-requested percentiles 

)(1 pz p

 .7H 

7.4 Back transformation and estimation of usual intake 

The 400+ values xi are back-transformed to the original scale. This is simple if no spline function has 

been estimated. If a spline function has been used, then it is a rather complicated procedure, because 

the spline function g was developed for daily intakes, not usual intakes. The following steps are made: 

1. First the 400+ values xi are expanded in a set of 9 * 400 values representing the distribution of 

daily intakes around each of the 400 points; 

2. These 9 * 400+ values are back transformed using the functions g and f , and the sets of 9 

values are then recombined (by weighted averaging) into 400 usual intake values yi ; 

3. A spline function g1 ,especially adapted for usual intakes, is now fitted to the 400 data pairs 

(xi, ti), where )( ii yft  ; 

4. Finally the usual intakes on non-zero intake days are represented by the back-transform using 

this improved function: ))(( 1 ii xgfy  . 

 

The user-requested percentiles py are the additional values (i > 400) in the 400+ set. The 400 yi 

values define the cumulative distribution function by: 
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The distribution is adapted in order to account for days with zero intake of individuals (defined here 

as individuals who have a positive probability of intake on any day, and therefore a non-zero usual 

intake). This is done by estimating the distribution of individual intake probabilities. This distribution 

is approximated via a number of classes (e.g. 21 or 51, can be selected by the user) arranged by the 

proportion of days on which there is a positive intake (pm). Using a binomial distribution for each 

class, the fraction of individuals in each class ( Mmm ,...,0;  ) is estimated by optimising the fit 

of the predicted proportions of individuals with 0, 1, 2, ... intake days to the observed proportions. The 

number of parameters to be estimated is usually higher than the number of possible outcomes for a 

individual (e.g. 3 when there are two days per individual), and therefore a smooth approximation is 

made using a modified minimum chi-squared estimator. See Dodd (1996) for details. Only the 

fraction of non-consumers ( 0 ) is estimated separately with no restriction to be similar to the other 

m . It can be noted that the distribution of individual intake probabilities can be better estimated 

when the number of days per individual in the consumption survey becomes higher. With only 2 days 

per individual the procedure gives a rather artificial distribution, often with an estimated 0 of zero 

This step can be time-consuming. Therefore, the number of iterations in the estimation procedure can 

be limited by the user. In our experience it is not generally necessary to use 50,000 iterations as in 

Dodd (1996). 

The estimated distribution of individual intake probabilities ( M ˆ,...,ˆ
0 ) is used to transform the 

distribution of usual intake on non-zero intake days ( yF ) to the distribution of usual intake for 
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individuals ( CF ) and finally to the distribution of usual intake for the entire population ( UF ). These 

transformations are based on the relation: 

 



M

m

mymU puFuF
1

0 )()(   

which basically says that to obtain a certain level of usual intake u we should consider a different 

level ( u/pm ) for the class of individuals which consume only on a fraction pm of days. See Dodd 

(1996) for details of the computational procedure. Linear interpolation based on the 400 values of the

yF distribution is then used to compute representations of the cumulative distribution functions for 

individuals only and the entire population.8H 

8  Chronic Risk Assessment - Observed individual means (OIM) 
The usual intake distribution for a population is estimated with the empirical distribution of within-

individual means. Each mean is the average of all single-day intakes (see 5 ) for an individual. The 

mean value for an individual still contains a considerable amount of within-individual variation. As a 

consequence, the distribution of within-individual means has larger variance than the true usual intake 

distribution and estimates using the OIM-method are biased, leading to a too high estimate of the 

fraction of the population with a usual intake above some standard. 

9  Acute risk assessment and the BBN model 
An acute risk assessment may be followed by an analysis where the acute intake distribution is related 

to a covariable and/or cofactor. Through MC-sampling, a large number of intakes is generated by 

combining randomly chosen consumption patterns of individuals i on day j with randomly chosen 

concentrations in the consumed foods. The replicates generated for individual day ij are further 

indexed by k to represent differences due to concentration variability. We ignore the finiteness of the 

concentration data, that is, we ignore the identity of the chosen concentration values in the original 

concentration dataset.  

9.1 Intake frequency model 

Let in and inpos be the total number of simulated intakes per individual, and the number of simulated 

positive intakes, respectively. Then inpos  is modelled as a function of e.g. age (and/or other 

individual characteristics), using a betabinomial distribution with binomial totals in  and 

overdispersion parameter   (independent of age). The fitted binomial probabilities are  ix xf̂  , 

where xi is the age of individual i, and the estimated overdispersion parameter is ̂ . 

9.2 Intake amount model 

For the positive intakes, consider power of logarithmically transformed values yijk. (see 379H5.2.1 ) 

Average over replicates to obtain individual day averages yij.. These values are modelled in a ML 

analysis with random terms individual and individual.day as a function of age (and/or other individual 

characteristics), with the number of values per individual day (nij) as weights wij to correct for 

differences in the precision at the individual day stratum. The fitted values from the model are 

 ix xf̂ , where xi is the age of individual i  

9.3 Estimating the acute risk variability of positive intake amounts 

Correct the full set of simulated positive intakes by )(
ˆ' ixijkijk yy  . Estimate the variance 

2

'y  of 

ijky' . We denote the estimated variance as
2

'
ˆ

y . Now for each selected age x the transformed positive 

intake distribution is modelled as normal with mean  xfx ̂  and variance 
2

'
ˆ

y . 
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9.4 Estimating the acute intake distribution 

Acute intake distributions dependent on a covariate are obtained by numerical integration. For each 

combination of levels of the covariable and cofactor, intake frequency values and transformed intake 

amounts are simulated and multiplied. This results in a number of distributions each one representing 

the acute intake distribution corresponding to a specific combination of levels of the covariates.  

 
59H 

10  Market shares of brands and brand loyalty 
Different brands of a food product may differ in levels of chemical substances or contaminants. For 

example, brands of potato crisps may have different levels of acrylamide due to differences in the 

sugar content of used potato varieties or differences in baking procedure (temperature, baking time). 

If both consumption data and concentration data are measured at the brand level, this presents no 

special difficulties for exposure assessment. Each brand is then just treated as a separate product. 

However, in practice brand information is often available for the concentration data, but not for the 

consumption data. In such cases it is necessary to have additional information on the consumption of 

the different brands.  

For a certain type of product, market share data may be available specifying the percentages of each 

brand. Ideally these percentages are weight percentages, but sales percentages may be used as a 

proxy. 

10.1 Acute health effects 

For acute health effects market shares are all that is needed to adapt a probabilistic exposure 

assessment. For each simulated consumption a brand can be selected with a probability proportional 

to the market share, and then a concentration value can be sampled from the distribution of 

concentrations specific for that brand. 

10.2 Chronic health effects 

In the case of chronic health effects we need additional information. It now becomes important to 

know if individuals always consume the same brand, or that they consume different brands, thus 

effectively averaging the concentrations of the different brands in their long-term food intake. The 

tendency to repurchase the same brand has become known as brand loyalty.  

There are two main approaches for modeling brand loyalty, known as the stochastic and deterministic 

approach (Odin et al. 2001). Whereas the stochastic approach just tries to give a satisfying description 

of observed brand loyalty behaviour, the deterministic approach tries to analyse the attitude of 

individuals towards brand selection in terms of a limited number of explanatory factors. In the context 

of dietary risk assessment it is typically the stochastic approach which is more useful. 

There is a simple stochastic model which has turned out to be extremely useful in analysing buying 

behaviour. This is the socalled Dirichlet model, first given in a comprehensive form by Goodhardt et 

al. (1984).  The surprising feature of this model is that it contains only one parameter for brand 

loyalty, implying that brand loyalty varies little, or relatively little, between competitive brands 

(Ehrenberg et al. 2004). Although this may seem a too simple representation at first, it has been found 

to give a close description of actual buyer behaviour in most cases of a systematic check across 34 

products categories (Uncles et al. 1994). 

10.3 The Dirichlet model adapted for probabilistic exposure assessment 

In a probabilistic model for chronic exposure asessment when brands are known for concentration 

data, but not for consumption data, we need the following information: 

1. the distribution of consumption by individuals on multiple days; 

2. for each brand: the distribution of concentrations in that brand of product; 

3. market shares of all brands of a product, and a brand loyalty factor L. 
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Typically 1 and 2 will be in the form of empirical datasets, for example resulting from food 

consumption surveys and monitoring programmes, respectively. Alternatively, we can specify 

parametric distributions, with parameters that are fitted to data or just specified based on prior 

knowledge or assumptions in what-if scenarios.  

Technically the Dirichlet model for brand choice needs nbrand parameters i (which should be 

positive real numbers). The average brand choice probability for each brand is i/S, where  iS 

. By definition, the market shares mi should be proportional to the brand choice probabilities, and thus 

to the parameters i. This means that S, the sum of the alphas, is the only additional parameter that 

should be specified, and indeed this is the parameter that determines brand loyalty. S=0 corresponds 

to absolute brand loyalty, and brand loyalty decreases with increasing S. We define 
1)1(  SL as 

an interpretable brand loyalty parameter, where now L = 0 and L = 1 correspond to the situations of no 

brand loyalty and absolute brand loyalty, respectively. 

 

Given empirical or parametric distributions of consumption and concentration values, the algorithm 

for chronic exposure assessment now operates as follows: 

1. collect consumptions for a large number of n of individuals, 

2. in case of market shares: simulate n selection probabilities from the Dirichlet distribution, 

3. estimate intake yijk for individual i on day j for food k as the weighted sum of the average 

concentration for B brands times consumption xijk and standardize for body weight.  In 

notation: 
i

B

b

ikbkbijk

ijk
w

bcpcx

y

 1 , where weight bcpikb  is the brand choice probability b for 

food k of  individual i, ckb is the average concentration for brand b of food k. Note that  




B

b

ikbbcp
1

sums to 1 for each individual i, 

4. aggregate intakes over the number of foods p, 

5. proceed as usual 

11  Uncertainty analysis 
In probabilistic risk assessment of dietary intake we use distributions which describe the variability in 

consumption within a given population of individuals and the variability of the occurrence and level 

of substances in the consumed foods. However, these calculations do not consider the amount of 

uncertainty that is due to the limited size of the underlying datasets. Typically, in a large number of 

simulations very many different combinations of consumption and concentrations are made. This 

leads to a smooth distribution of simulated intakes, and the impression of a very precise estimation of 

intake percentiles or other quantities of interest. It is essential to realise that the accuracy of the 

inference depends on the accuracy of the basic data.  

 

When doing an uncertainty analysis in MCRA a number of iterations is chosen, and in each iteration 

new inputs are resampled for a complete Monte Carlo analysis: 

1. Datasets (concentration data, individual data) are resampled from the original database 

(bootstrap methodology) 

2. Parametric inputs, such as portion size uncertainty and processing factors and their 

variabilities are resampled from parametric distributions. 

 

Even after consideration of sources of uncertainty that can be quantified, many uncertainties remain 

that cannot be quantified easily. EFSA (2006) has indicated a general way to handle such qualitative 

uncertainties. MCRA contains a tool developed by Helen Owen (FERA, UK) to build a table 

addressing qualtitative uncertainties and add this table to the output of an MCRA run. 
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11.1 Resampling datasets 

A computer-based instrument to assess the reliability of outcomes is the bootstrap (Efron 1979, Efron 

& Tibshirani 1993). In its most simple, non-parametric form, the bootstrap algorithm resamples a 

dataset of n observations to obtain a bootstrap sample or resampled set of again n observations 

(sampling with replacement, that is: each observation has a probability of 1/n to be selected at any 

position in the new resampled set). By repeating this process B times, one can obtain B resampled 

sets, which may be considered as alternative data sets that might have been obtained during sampling 

from the population of interest. Any statistic that can be calculated from the original dataset (e.g. the 

mean, the standard deviation, the 95
th
 percentile, etc.) can also be calculated from each of the B 

resampled sets. This generates a uncertainty distribution for the statistic under consideration. The 

uncertainty distribution characterises the uncertainty of the inference due to the sampling uncertainty 

of the original dataset: it shows which statistics could have been obtained if random sampling from 

the population would have generated another sample than the one actually observed. 

 

In MCRA,  two type of data are combined: individual consumption data and concentration data. It 

makes sense to apply resampling to both type of data separately, in order to characterise the 

uncertainty in the final intake. In MCRA the uncertainty algorithm (when selected) is applied to: 

1. the multivariate consumption patterns and associated body weights: actually the data set of 

individuals is resampled, and all individual information (consumption patterns for all 

consumption days, body weight, and age) is coupled to the selected individual.  

2. the univariate concentration data sets: these are resampled independently for all foods. In 

principle, the uncertainty algorithm is applied to the dataset consisting of both non-detects and 

positive values; in practice, for a dataset with n0 non-detects and n1 positive values, the number of 

positive values in a resampled set is obtained as a draw from a binomial distribution with 

parameter  101 nnn   and binomial total 10 nn  . Then, this number of values is selected 

randomnly from the set of n1 positive values. 

 

In MCRA the resulting uncertainty distribution of percentiles of the intake distribution is summarised 

by specifying empirical 2.5
th
 , 25

th
, 75

th
 and 97.5

th
 percentiles. The outer percentiles constitute a 

central 95% confidence interval for the variability percentiles. However, for this it is necessary that 

the number of resampled sets B is high enough. The number of resampled sets  should be chosen 

depending on the confidence level wanted for the uncertainty interval. Typically 500-2000 resampled  

sets will be reasonable for a 95 % confidence interval (Efron & Tibshirani 1993, pp. 14-15, 275). 

 

The same uncertainty algorithm can also be applied to deterministic estimates which are calculated 

from data sets. For example the maximum concentration found in a resampled set will be different, if 

the actual maximum value in the original dataset has not been selected. Also data-based estimates of 

large portion and average body weight will vary. 

11.2 Resampling parametric distributions, processing 

Processing effects are modelled either by a fixed processing factor, or by a lognormal or logistic-

normal distribution (depending on the distribution type set in table Processingfactor).  

In the former case (fixed factor) the uncertainty distribution is lognormal or logistic-normal with the 

same mean  as the fixed value, and with a standard deviation unc which is calculated from the 

specified central; value (procnom) and an estimate of p95 of the uncertainty distribution 

(procnomuncupp).  

The calculation for the logistic-normal distribution (disttype 1): 

 

unc ={logit(procnomuncupp) – logit(procnom)}/1.645,   

 

and for the lognormal distribution (disttype 2). 

 

unc ={ln(procnomuncupp) – ln(procnom)}/1.645,  
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Values lower than 0.01 or higher than 0.99 (disttype 1 only) are replaced by default values (0.01 and 

0.99); this is useful computationally to avoid problems. In each iteration of the uncertainty analysis a 

new value is drawn from this distribution to be used as a fixed factor in the Monte Carlo calculation. 

In the case of a processing factor distribution (describing the variability of processing factors) two 

uncertainties can be specified. First, the uncertainty about the central value  can be specified as 

before using a parameter procnomuncupp. Secondly, the uncertainty about the variability standard 

deviation var can be specified by the number of degrees of freedom df of a modified chi-square 

distribution which is used to generate new values of var. Setting df very high means litte uncertainty, 

and  var will be almost equal in all iterations of the uncertainty analysis. Setting df close to 0 means a 

large uncertainty, and very different values of var  will be obtained in the iterations of the uncertainty 

analysis. 

11.3 Portion size uncertainty 

In the context of the European Food Consumption Validation Project (EFCOVAL) the MCRA model 

for uncertainty has been adapted specifically to the six quantification methods of EPIC-SOFT (HTable 

3).   Using EPIC-SOFT for 24-hour recall consumptions are quantified using portion size and amounts 

of portions consumed. Although individual consumption data are expressed in grams per day, the 

primary data may be associated with uncertainty in portion size and amount or number of portions 

consumed. So, the primary data are unitweights (e.g. the weight of a portion shown on a photo, or the 

weight of a standard household measure) and amounts of units (e.g. the number of shown portions or 

the number of cups), the multiplication of both values is the amount consumed in grams. The 

corresponding portion size uncertainty is primarily connected with unitweights and amounts.  

 

Method Unitweight (uw) Amount (a) 

Photographs (P) Standard portion in grams 

(Photo 1 of broccoli is 78 g) 

Proportion or multiple of standard portion 

(1 times photo 1 of broccoli) 

Household measures 

(H) 

Standard portion in grams 

(a glass of tea is 150 g) 

Proportion or multiple of standard portion 

(2 glasses of tea) 

Standard units (U) Standard portion in grams 

(a can of corn is 285 g) 

Proportion or multiple of standard portion 

(1/2 a can of corn) 

Standard portion (S) Standard portion in grams 

(onion along with fries 

weighs 10 g) 

1 

Gram/volume (G) 1 Amount in grams 

(75 g of potato salad) 

Unknown (?) 1 Amount in grams 

(Salad dressing weighs 15 grams) 

Table 3: Overview of EPIC-SOFT quantification methods, with examples in brackets 

 

Three methods (P, H and U) use both unitweights and amounts, one method (S) uses only unitweights, 

and two methods (G and ?) use only amounts. The difference between unitweight and amount is as 

follows: unitweights (in grams) are unique for a specific “food item – quantification method”-

combination, but the same for all individuals in the survey, whereas amounts are potentially different 

for each food item on each eating occasion for each day of an individual. Amounts are in grams 

(methods G and ?) or in number of units (methods P, H, and U).  

 

For an uncertainty analysis of the usual intake assessment of foods and nutrients three sources of 

uncertainty are modelled:  

1. sampling uncertainty of the set of individuals interviewed on their consumption, 

2. uncertainty in uw (for EPIC-SOFT quantification methods P, H, U and S) 

3. uncertainty in a (for EPIC-SOFT quantification methods G, P, H, U and ?).  
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For quantification methods P, H and U the uncertainty in uw as well as the uncertainty in a needs to 

be specified, for quantification methods G and ? the uncertainty in a needs to be specified, and for 

method S the uncertainty in uw needs to be specified (401HTable 3). The uncertainty cv specifications 

were obtained using limited expert opinion to provide estimated upper values for a and uw, and 

equating these to the p97.5 of the (log)normal uncertainty distribution (the best estimates are 

interpreted as the mean m).  

 

More details of the approach to portion size uncertainty implemente din MCRA are described in 

Souverein et al. (2011). 

 

11.4 Measurement uncertainty 

An option has been added to correct for measurement uncertainty. Concentration data are variable 

because of sampling error, but also because of analytical error. The amount of analytical error is 

commonly quantified as measurement uncertainty.  If the measurement uncertainty of the 

concentration data is known it can be subtracted from the total variance in the data (to a minimum of 

0). For measurement uncertainty MCRA will suggest a coefficient of variation (CV) based on the 

Horwitz equation and the mean level of the compound over all available concentration data. When 

analytical error is reported by the analytical laboratory, then this information could be used (CV, as 

%). 

 

12  Simulated intake data 
MCRA can also be used to simulate intake data for one or two foods based on an extended version of 

the LNN model. In addition to the simulated data the true usual intakes can be stored. 

 

There are two sources of variation with respect to intake: between individuals and between days 

within individuals. These sources are handled separately in the simulation model. The description 

below is in terms of logarithmic or Box-Cox transformed amounts. Only at the very end the simulated 

amounts are back-transformed to the original scale. The simulation model is discussed below for two 

foods. This model is similar to that in Slob et al. (2010), but here it is described in such a way that 

extensions to multiple foods follows readily.  

Variation between individuals 

First consider the variation between individuals. The frequency with which an individual consumes a 

food is given by the Logistic-Normal distribution, i.e. for foods 1 and 2 the individual-based 

frequencies    and    are given by 

 l    (  )     with            (      
 ) 

      (  )     with            (      
 ) 

The individual-based (transformed) amounts    and    are given by normal distributions: 

      Normal(      
 ) 

      Normal(      
 ) 

Instead of four independent normal distributions, a 4-dimensional multivariate normal distribution can 

be specified for (           ) with mean vector    (           ) and variance-covariance 

matrix 

     

(

  
 

   
                        

              
  

                      

                      

   
                       

              
 

)
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Note that in this notation the first subscript (1 or 2) denotes the food while the second subscript 

denotes whether the between persons variability relates to frequency (f) or to amount (a). The 6 

correlations in the matrix above relate to between-persons variability. These can be grouped as 

follows 

 The correlation between the frequency and amount of the same food (      and      ) 

 The correlation between the frequency of food 1 and the frequency of food 2 (     ) 

 The correlation between the amount of food 1 and the amount of food 2 (     ) 

 Mixed correlations between the frequency of one food and the amount of the other food (      

and      ). 

Variation between days within individuals 

A random draw from the 4-dimensional normal distribution given above results in frequencies   and 

   and amounts    and    for an individual. The day-to-day variation for this individual can be 

modeled in a similar fashion. Following Slob et al (2010) the frequencies   and     are first 

transformed to the real line by means of     
  (  ) and     

  (  ), in which     is the 

inverse of the normal distribution function.  The frequencies and amounts on a particular day for this 

individual can then be modeled by a 4-dimensional multivariate normal distribution for 

(           ) with mean vector    (       ) and variance covariance matrix  

     

(

 
 

                        
           

  

             

                   

                       

           
 

)

 
 

 

A random draw (           ) for a particular day results in the following simulated intake for food 

1 on that day, and similarly for food 2. The first food is consumed when the random draw    is 

smaller than   . When the food is consumed, the transformed amount consumed is given by      . 

Finally this amount is transformed to the original scale by using the inverse of the logarithmic or Box-

Cox transformation, i.e.     
  (     )in which    () denotes the inverse transformation. 

 

The back transformation     
  (  ) in combination with the marginal normal distribution for    

ensures that the long-term frequency of consuming the first food equals   . For the frequencies the 

model uses two transformations: the logistic transformation for the individual based frequencies and 

the probit, i.e.    , for the day-to-day transformation. An alternative would be to use the probit or 

logit transformation for both. 

Generalization to multiple foods 

The approach given above is easily extended to multiple foods. The number of parameters increases 

quickly with the number of foods. With n foods the parameters can be grouped as follows 

 2n mean parameters for individuals, i.e.    and    for each food. 

 2n variance parameters for individuals, i.e.    
  and    

  for each food. 

 n(2n-1) correlation parameters for individuals, i.e.  . 

 n variance parameters for days, i.e.    
  for each food. 

 n(2n-1) correlation parameters for day, i.e.  . 

Restrictions on the variance-covariance matrices 

Both variance-covariance matrices    and    must be positive definite. This implies that the 

correlations cannot be chosen independently. This can be seen as follows. Suppose that the correlation 

between variables A and B equals 0.9 and the correlation between A and C also equals 0.9. It is clear 

that the variables B and C are then also positively correlated. It can be shown that the correlation 

between B and C must then be larger than 0.62, and this is also the case when the two correlations are 
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-0.9. To explore this a bit further in the current context, suppose that we have 2 foods and we wish to 

set the mixed individual correlations (      and      ) to zero. Further suppose that the two 

correlations (      and      ) between frequency and amount of the same food have the same value, 

say m, and the two correlations between frequencies and between amounts (      and      ) have the 

same value as well, say r. We then have the following correlation matrix, with variances set to 1: 

     (

 
  

 

   

   
  
  

) 

It can be shown that when m = 0.8 the value of r must be in the interval (-0.2, 0.2), and the same holds 

when m = -0.8. Generally, for this correlation matrix, r must be in the interval (-(1-m), 1-m). With the 

additional constraint that r = m, the correlations must be in the interval (-0.5, 0.5). When the six 

correlations are all set to the same value, this value must be in the interval (-1/3, 1). 

Usual intake 

The usual intake of an individual is defined as the long-term intake which is obtained by integrating 

out the day-to-day variability. In mathematical terms it is the expectation of the intake on a single day 

(for a given individual). In the two foods case suppose that (           ) is a realization of 

(           ) for an individual. The intake of food i on a single day is defined as 

      with probability (    ) 
     

  (     ) with probability    and 

           (     
 ) 

The long-term intake for this person, summed over foods, then equals 

  (     )           logit
-1(  )   

  (     )  logit
-1(  )   

  (     ) 

and this result readily extends to more than 2 foods. The day-to-day correlations   are thus of no 

importance for the usual intake. For the log-transform the expectation    
  (     ) is given by 

   (      
   ) which follows immediately from the expectation of the log-normal distribution. For 

the Box-Cox transformation the expectation can be approximated by Gauss-Hermite integration. The 

usual intake distribution can approximated by simulating many individuals and calculation the usual 

intake for these individuals. This gives a large sample from the usual intake distribution which can be 

used to calculate quantiles. 

 

Below, expressions are given for the mean and variance of the usual intake distribution (i.e. integrated 

over individuals) of a single food. Although the mean and variance of the usual intake distribution 

have little practical relevance, they can be used as a first check of the simulation results. The mean 

and variance can be calculated directly when the following two conditions are met: 

 there is no correlation between the frequency and the amount, i.e.       and       both equal 

zero. This implies that the frequency and amount are independent, 

 the log transform is used for the intake. 

In that case it follows from the expectation of the log-normal distribution that for an individual with a 

realization a of A the true usual intake equals    (    
   ). Since A itself follows a normal 

distribution with mean   and variance   
  it is clear that for the usual intake distribution: 

    ( )  Normal(    
  ⁄    

 )  

The expectation and variance of y are then given by  

       (    
  ⁄    

  ⁄ ) 
   

  [   (  
 )   ]   

  

The expectation and variance of the frequency P can be readily obtained by numerical integration 

giving    and   
 , i.e. 
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    ∫[     (  )]
    (        

 )   

   
  ∫{[     (  )]     }

   (        
 )   

in which  () is the normal density function with mean   and variance   
 . 

The expectation and variance of the usual intake distribution are then given by 

  (   )   ( )   ( )       

  ar(   )   (     )    (   )  (  
    

 )(  
    

 )    
    

  

If necessary higher order moments can be calculated in a similar way. 

 

13  About MCRA 
MCRA is a result of an ongoing co-operation between RIKILT/RIVM and Biometris since 1998 

(where RIKILT Intitute of Food Safety was the home of the current RIVM activities until 2009). 

RIVM co-ordinates the Dutch KAP programme (Quality of Agricultural Products) where results of 

monitoring programs for chemical substances in food are gathered in a national database. RIVM also 

has a recipe database to link food codes from the Dutch food consumption table to primary 

agricultural products. Biometris contributes statistical models and programs for quantitative risk 

analysis. 

Since 2005, the program was extended in collaboration with RIVM to include models similar to those 

available in the STEM, SPADE and NCI softwares.  

 

MCRA is written in Microsoft Visual C# .NET 2008. MCRA is internet-based and can be used by 

registered users at 0Hhttp://mcra.rivm.nl. It consists of a basic program to do the computations and of 

additional database selection possibilities implemented in ASP.NET. A 1HR-(D)COM interface is used 

to connect the application with R, which is running in the background for statistical analyses and 

graphics (2Hhttp://cran.r-project.org). 

 

An earlier version of the MCRA program, as well as an implementation of the Monte Carlo method in 

@Risk (1996), have been described in van der Voet et al. (1999), further elaboration was given in de 

Boer & van der Voet (2000, 2001, 2006), de Boer et al. (2009) and van der Voet et al. (2001).  

 

This manual covers the current release 7.1 (release 7 version 1). Major updates of the program, 

encompassing new or improved facilities will be released with an increased release number and a new 

manual. 

 

Find more information about the current MCRA release in: 

MCRA 7.1 Reference Manual 

MCRA 7.1 Overview 

MCRA 7.1 Data Formats 

MCRA 7 Examples 

MCRA 7.1 On Line Help 

 

http://mcra.rivm.nl/
http://cran.r-project.org/contrib/extra/dcom/
http://cran.r-project.org/
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